Buscar en este blog

domingo, 28 de mayo de 2017

Matemagiando con alumnos de secundaria

Esta entrada está basada en la comunicación "Matemagiando con alumnos de secundaria" que desarrollé junto con mis compañeros Juan Núñez Valdés, profesor del departamento de Geometría y topología de la Universidad de Sevilla, y Sandra Benítez Peña en un instituto de Sevilla capital.

Dicha experiencia tuvo como objetivo probar diferentes técnicas didácticas para motivar e interesar a los alumnos por las matemáticas. Para ello, además, hicimos uso de un juego de cartas.

A continuación pasaremos a describir dicha práctica:
Al desarrollar esta actividad en el aula preguntamos en primer lugar a los alumnos que cuánto es 2+2. Con pregunta generamos una “tormenta de ideas”. Se trata de una herramienta de trabajo grupal que facilita el surgimiento de nuevas ideas sobre un tema o problema determinado. La respuesta esperada por la mayoría de los alumnos es 4, a lo que nosotros responderemos que no siempre es así. Para intentar explicar que esto no siempre es verdad, actuaremos de la siguiente manera.

Les diremos a los alumnos que se imaginen que viajamos a otro planeta en el que el sistema horario no es el mismo que el de la Tierra. En este planeta sólo existen 4 horas, es decir, el reloj comienza en la hora 0 y las horas posteriores son la 1, 2 y 3. Cuando el reloj llega a las 4, ha pasado un día completo, luego nuestra hora serían las 0, y así seguiríamos sucesivamente: las 5 sería la 1, las 6 serían las 2… Véase la siguiente figura.
Figura 1. El reloj en el nuevo planeta

Una vez entendida esta idea pasaremos a realizar un truco de magia con cartas en el que se aplicará lo aprendido. Con la idea de fomentar el aprendizaje cooperativo dividimos la clase en 4 grupos. A cada grupo le indicamos que piensen un número de tres cifras no capicúa, es decir, un número cuya primera y tercera cifra no sean iguales. Los alumnos deberán apuntar dicho número que tendrán que elegir entre todos los componentes del grupo y después escribirlo al revés, es decir, cambiar la primera cifra del número por la tercera y al revés, manteniendo la segunda cifra en su posición central.


Después, con esos dos números, los alumnos restarán al mayor el menor, obteniendo así un tercer número. Les aclararemos que necesitamos que el resultado de esa diferencia sea un número de tres cifras, por lo que si su tercer número resultante de esa resta es de solo dos cifras, entonces tendrán que hacer que tenga tres cifras colocándole un 0 delante de sus dos cifras. A continuación, les pedimos a los alumnos que hagan con este tercer número lo mismo que hicieron con el primero, es decir, escribirlo al revés, obteniendo así un cuarto número, y finalmente, les solicitaremos a los alumnos que sumen estos dos últimos números y que guarden el resultado, sin que puedan verlo ninguno de sus otros compañeros que están en otros grupos realizando el mismo juego. Con este problema guiado estamos usando una técnica de descubrimiento: la solución de problemas. Dicha técnica pretende que el alumnado, a través del aprendizaje guiado, sea capaz de analizar los distintos factores que intervienen en un problema y formular distintas alternativas de solución.

Por poner un ejemplo de lo explicado anteriormente:

 
Posteriormente invertimos el orden de sus cifras, es decir, escribir el número al revés, en nuestro ejemplo será 321. 

Al mayor de los 2 números le restamos el más pequeño y obtenemos un nuevo número. 

1.    Si este número es de 3 cifras --> se queda igual. 
2.    Si es de 2 cifras -->  le añadimos un 0 a la izquierda.
321
-123  
-------
198

Ahora volvemos a invertir el orden de las cifras y en este caso sumamos estos 2 números.
198 ---> 891

  198
+891
-------
1089

Seguidamente, comenzaremos con el juego de cartas. Empezamos barajando las cartas para que éstas no estén ordenadas, sino dispuestas aleatoriamente. Como para el juego que vamos a hacer solo son necesarias treinta y nueve cartas y no las cuarenta de la baraja, le pedimos a un alumno que elimine una carta al azar, sacándola de la baraja y retirándola, para poder empezar ya así el juego. Esto se le pedirá a cada uno de los grupos  de alumnos formados, como es lógico.


El juego consiste en lo siguiente: un alumno de cada grupo debe elegir una carta de entre las treinta y nueve de la baraja, mirar a ver cuál es, enseñársela al resto de compañeros de su grupo, y finalmente, volver a meterla entre las demás cartas y barajar de nuevo. Esa será la carta que uno de nosotros va a adivinar, en cada uno de los grupos formados, por supuesto, empleando para ello sus fuertes conocimientos matemáticos, ante la natural expectación e incredulidad de los alumnos de la clase, cada uno de ellos integrante de uno de los distintos grupos formados.

Para empezar el truco de magia, uno de nosotros cogerá la baraja “boca abajo” y volteará las cartas, poniéndolas ahora hacia arriba, de forma que sean visibles para los alumnos, y distribuyéndolas en tres montones de forma que la primera carta forme parte del primer montón, la segunda del segundo y la tercera del tercer montón, volviendo a repetir el proceso a partir de la cuarta carta, es decir, se coloca la cuarta carta en el primer montón, la quinta en el segundo, la sexta en el tercero, la séptima en el primero, y así sucesivamente $(véase\,\, la \,\,siguiente \,\,figura)$.

Figura 2. Primera distribución de las cartas en montones
Uno de nosotros comentará a los alumnos que es importante que no pierdan de vista en ningún momento la carta que han sacado de la baraja, ya que cuando se hayan completado los tres montones, los alumnos deberán decirle al representante de su grupo en qué montón se encuentra esa carta.

Sin dar ninguna explicación, como si lo hiciese de forma no premeditada, colocará ese montón en medio de los otros dos y volverá a repetir todo el proceso tres veces más, de forma que en total se hayan completado cuatro formaciones de montones distintas.

Seguidamente, cuando estén formados los tres montones de la cuarta y última distribución de las cartas, se cambiará el orden de distribución de las cartas de la siguiente forma: las 3 primeras se colocan una en cada montón, la cuarta en el tercero, la quinta en el segundo, la sexta en el primero, la séptima en el primero, y así sucesivamente.

                       Figura 3. Última distribución de las cartas en montones

Finalmente, en esta última distribución, les diremos a los alumnos que ya se va a adivinar la carta de cada grupo. Para ello, se tomará el montón en el que se encuentra la carta, se ponen las cartas de ese montón boca abajo y se empieza a sacar cartas de la parte inferior del montón, de una en una, colocando las cartas impares $(con\,\, numeración\,\, impar)$ en la parte superior y eliminando las cartas pares hasta quedarse con 4 cartas.

Las 4 cartas se distribuirán en forma de reloj de 4 horas. Posteriormente se le pide a los alumnos de cada grupo que sumen las cifras del número obtenido y si el resultado es de dos cifras que vuelvan a repetirlo hasta obtener una cifra. La posición de la carta será la correspondiente a este número obtenido.

Conclusión
Como se puede observar nuestro objetivo se basa en transmitir conceptos básicos que motiven a los alumnos y vean así las matemáticas de otro punto de vista. En este caso, aplicada a un juego de cartas, algo que sin duda aporta un mayor interés de los alumnos a esta área. De esta forma acabamos con las clases monótonas de matemáticas.
Otras versiones
  • Se puede llevar a cabo este truco por 4 personas y que cada profesor-mago realice el truco en cada grupo. De este modo, podríamos hallar de forma similar $(sin\,\,hacer\,\,la\,\,suma\,\,final)$ la carta de cada grupo, una para cada cifra del número 1089.
  • Se puede cambiar el orden en el que se adivina la carta por otro. Por ejemplo, en el montón primero se colocan 3 cartas, en el segundo las dos siguientes y en el tercero una y a continuación repetimos esto de derecha a izquierda, es decir, tres en el tercero, dos en el segundo y una en el primero, y repetimos el proceso. Las 3 últimas cartas las distribuiremos una en cada montón.


Esta entrada participa en la Edición 8.4 “Matemáticas de todos y para todos” del Carnaval de Matemáticas cuyo anfitrión es, en esta ocasión, matematicascercanas.

@antonio_arjona7

3 comentarios:

  1. Buenas,

    acabo de caer por casualidad en este blog y esta me ha parecido una buena idea para hacerles ahora a mis alumnos en las horas muertas entre examenes de la 3ª evaluación y los examenes finales.
    Aparte de matemático he estudiado bastante magia y tengo algun juego automático o documento con "trucos matemáticos" que os pueden servir.
    He estado probando este juego y hay varias cosas que no me quedan claras o no he entendido directamente. Al final, cuando nos quedamos con 4 cartas nos quedamos con la carta elegida entre ellas en la primera posición, y doy por hecho que cuando se ponen en disposición de reloj se empieza desde arriba en sentido de las agujas del reloj.
    Pero aqui llega mi problema, el número obtenido al inicio siempre es 1089, es un problema fácil de algebra comprobarlo y con ello me surgen varios problemas referentes a estos dos párrafos:
    "Las 4 cartas de cada grupo se distribuirán en forma de reloj de 4 horas. Posteriormente se le pide a un alumno de cada grupo que nos diga una cifra de su número.

    Luego pediremos un voluntario de cada grupo para que nos diga una cifra de su número y elija la posición de la carta utilizando el reloj. Así obtenemos las 4 cartas que eligieron los alumnos al comienzo del truco."

    1º Se piden dos veces una cifra del número, ¿para que se utilizan cada una?
    2º ¿Desde donde se empezaría a contar?
    3º Veo un problema con el 1089, no todas las cifras tienen la misma congruencia modulo 4, de hecho son 0 y 1, por lo que hay dos posiciones finales.

    No se si es que me he hecho un lío yo pero no veo el final.

    Un saludo.

    Álvaro

    ResponderEliminar
  2. Gracias por la observación Álvaro. Yo soy profesor también pero todavía no he empezado a trabajar por la bolsa. Este año me he quedado cerca. A mi también me gusta la magia matemática aunque no conozco mucho, si puedes recomendarme alguna página o lo que sea te estaría agradecido. Este truco se lo he hecho a muchos niños y todos acaban encantados y sorprendidos. Desde 1º ESO en adelante. El problema ha sido que ya lo he llevado a cabo en varios grupos. Unas veces lo hice solo y otra vez entre 4 personas y por eso la confusión de las 4 cartas porque hablaba como si hubiera 4 personas pero no lo dije inicialmente, disculpa. Ya está aclarado para hacerlo uno solo y he añadido dos anotaciones: una para hacerlo con 4 personas y otra para cambiar la forma de adivinar la carta. En este caso la carta caería en el montón derecho y no en el centro como ocurre en el planteamiento inicial.

    Un saludo

    ResponderEliminar
  3. Buenos días,

    ahora ya me sale correctamente y todo tiene sentido. Creo que lo usaré algún día de estos en clase junto a algún otro.
    Te paso un documento de algunos profesores de la UAM que puede servirte https://www.uam.es/personal_pdi/ciencias/gallardo/magia.pdf
    Y tambien conozco un juego automático que se puede adaptar a las Matemáticas muy facilito y visual que se encuentra en el libro de "Cartomagia Fundamental" de Vicente Canuto. No recuerdo ahora mismo el nombre del juego pero si saco tiempo podría redactarlo y pasartelo.

    Un saludo.

    Álvaro

    ResponderEliminar