Buscar en este blog

lunes, 5 de marzo de 2018

Olimpiadas matemáticas Thales

Si tienes facilidad con las mates; resuelves problemas como churros; tienes curiosidad por resolver acertijos, puzles o retos matemáticos; te aburres con los ejercicios de cálculo; no te quedas con las soluciones sencillas de una serie de números; piensas las cosas más de la cuenta...

Si cumples algunos de los requisitos anteriores y además estás en 2º de ESO, tienes que presentarte a las Olimpiadas Matemáticas. Cómo ya ha pasado el plazo para apuntarse pero sé has sido un poco avispado y ya lo has hecho, tienes una cita el próximo sábado día 10 de marzo.

Debes saber que los cinco primeros clasificados pasan a una fase regional, de Andalucía, que es en Granada del 9 al 12 de mayo y si eres de los mejores pues podrás ir a la fase nacional, de toda España, que será en Valencia a finales de junio. Representas a tu centro y lo harás muy bien. Para ello debes ser consciente de tus capacidades, practicar problemas de años anteriores y así estar en contacto con problemas de similar dificultad. Estos problemas aparecen en la siguiente página en la parte derecha $(Ediciones\,\,anteriores)$. Elige el año que quieras y te aparecerán los problemas y sus soluciones. ¡Ojo! Antes de ver la solución practícalos TÚ primero.

El examen dura 2h y 30 minutos y consta de 6 problemas. Intenta no estar mucho tiempo con un problema pues te quitará parte del tiempo de otro. Cada problema vale 10 puntos.

Existe un premio que se llama PACO ANILLO y será para aquel alumno que resuelva un problema de la manera más original, creativa, innovadora e ingeniosa.

No te agobies, confía en ti mismo. Piensa muy bien lo que escribes y cómo lo haces. La primera idea puede no ser la correcta, debes reflexionar bien las respuestas pues sois muchos los que os presentáis y cada mínimo detalle cuenta. No te lo tomes como algo personal, y por supuesto no te agobies si no te sale un problema. Puedes continuar con otro distinto y retomarlo de nuevo más tarde, pues seguro que cuando lo veas con nuevos ojos ya te surge alguna idea distinta que te hace mejorar en tu camino hacia la solución. Utiliza dibujos, esquemas, representaciones de la situación del problema...

Debes llevar tu calculadora y material de dibujo como regla, compás, transportador de ángulos... ¡Que no se te olvide!

Para más información sobre el concurso ver la siguiente página.

Si quieres tener algunos truquillos sobre cómo resolver problemas y algunas estrategias sobre la resolución de problemas de este tipo, entra en el enlace.

Una vez hayas leídos todas estas técnicas y consejos que aparecen en la página anterior, te doy otras recomendaciones y conceptos que debes conocer... en primer lugar los criterios de divisibilidad del 2, 3, 4, 5, 8, 9, 10 u 11.




Es una experiencia única. La he vivido como participante y como organizador. Es una pasada. ¡Suerte y ánimo!

Resolver problemas

Si quieres resolver algunos problemas y no sabes cómo hacerlo, si te presentas a las Olimpiadas Matemáticas o a una prueba como Estalmat, te podrán ser útil estos...

PASOS PARA RESOLVER PROBLEMAS

1. Comprender el problema.


Nota: 1. La primera vez que se lee el problema no hay que prestar mucha importancia a los detalles sino al problema en conjunto para poder tener una idea "de qué va el problema".
2. Es importante leerlo varias veces para tenerlo completamente asimilado.

2.  Concebir un plan  ¿Cómo vamos a intentar resolverlo?

Ten en cuenta: 
  • ¿El problema es parecido a otros que conocemos?
  • ¿Se puede plantear de otra forma más sencilla?
  • Imaginar un problema parecido pero más sencillo.
  • Considera el problema desde varios puntos de vista y elige el más adecuado.
Técnicas para resolverlos:
  • Si conozco un problema similar, intento resolverlo aplicando las mismas técnicas.
  • Si el problema es complicado, puedo intentar estudiar primero los casos más sencillos.
  • Puedo descomponer un problema en otros más sencillos y resolverlos uno a uno.
  • Hacer recuentos, tablas, dibujos, esquemas...
  • Organízate y sigue un método.
  • En los problemas geométricos puedes hacer uso de la simetría. Además de las fórmulas de áreas, perímetros y volúmenes.
  • Para encontrar patrones en las sucesiones o series de números, observa cómo varía un término con respecto al anterior. Normalmente son sumas, restas, productos y divisiones. En gran medida, es útil factorizar los números obtenidos en la secuencia y ver cómo varían.
3. Ejecutar el plan
  • Comprobar cada uno de los pasos.
  • ¿Se utilizan todos los datos cuando se lleva a cabo el plan?
  • Contar qué se hace y para qué se hace, es decir, argumenta todo lo que haces. Los razonamientos son fundamentales. ¡Todo ocurre por algo!
  • Si nos bloqueamos puedes: volver al principio, reordenar las ideas y probar de nuevo o cambiar de ejercicio, la próxima vez que lo retomemos lo veremos con otra perspectiva. 
4. Comprobar los resultados
  • Comprobar que hemos averiguado lo que se pedía.
  • ¿La solución es lógicamente posible?
  • ¿Hay otra forma de resolver el problema?
  • ¿Hay otra solución?
  • Justificar los razonamientos. Explicar claramente la solución obtenida $(cómo\,\,se \,\,ha \,\,hallado)$
Estas ideas están basadas en los 4 pasos de Polya.

Otras ideas a tener en cuenta:

  • Cuando hacemos recuentos, no se puede contar al azar. El caos está endemoniado y nos lleva a saltarnos algún caso sin contar. Empieza con un orden, es más fácil tomar primeros los números más pequeños y luego los mayores. Por ejemplo, si queremos formar números de 3 cifras distintas con los números del 1 al 4, empezamos formando los números de menor a mayor y fijamos el 1 como primera cifra y colocamos todos los números que empiezan por 1. Una vez fijamos la primera cifra, fijamos la segunda y variamos la tercera hasta que ya no podamos más:  En el ejemplo: fijamos el 1 y como segunda cifra el 2 y formamos las combinaciones 123 y 124. Si cambiamos la segunda cifra por un 3 podemos obtener 132 y 134. Si cogemos el 4 como segunda cifra tenemos el 142 y 143. Como ya hemos acabado con el 1, cambiamos la primera cifra por 2 y hacemos lo mismo: 213, 214, 231, 234, 241 y 243. Si hacemos lo mismo con la cifra 3 y 4 tenemos: 312, 314, 321, 324, 341, 342, 412, 413, 421, 423, 431, 432. Si nos preguntaran por la cantidad de números es obvio que por simetría, aparecen 6 casos por cada número que coloquemos el primero, como hay 4 posibilidades de obtener el primer número $(1,\, 2,\, 3\, y\, 4)$, entonces tenemos 6 · 4 = 24 posibilidades. 
  • Es bueno hacer las operaciones y razonamientos de cabeza, pero a veces podemos equivocarnos. Utiliza la calculadora para asegurarte las cuentas y los esquemas y dibujos para organizar tus ideas. 
  • En los recuentos, es fundamental saber cuando se termina de contar y por qué, es decir, saber que no me falta ningún caso por tener en cuenta. El orden es importante y con él sabrás cuando has acabado.




















lunes, 29 de enero de 2018

Tabla de derivadas


Descargar aquí

Cabe destacar, que si u = x, entonces u' = 1 y por tanto podemos obtener una tabla de derivadas en x, haciendo los cambios anteriores.

@antonio_arjona7

lunes, 6 de noviembre de 2017

¿Te imaginas la vida sin números?

Como ya he observado en gran parte de vosotros, muchos pensáis que las matemáticas no os van a servir en vuestra vida. ¿Pero es esto cierto?

Estamos a tiempo de cambiar esta percepción de las matemáticas como algo inaccesible y lejos de nuestro alcance. Tenemos que encontrar su utilidad y encontrar la relación que existe con nuestras vidas y con todo lo que nos rodea.

Hoy vamos a ver la importancia que tienen los números en nuestras vidas, pero...

¿Qué sería de nuestra vida sin números?

¡UN CAOOOOS!
Resultado de imagen de caos

¿Os imagináis un día sin números? ¿Cómo sería?


TAREA

Realiza un comentario con tu nombre en esta entrada en el que respondas a estas preguntas e indica 4 situaciones de la vida cotidiana en la que se utilicen los números.